Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition.

نویسندگان

  • Q Li
  • Y Cao
  • P Yu
  • R K Vasudevan
  • N Laanait
  • A Tselev
  • F Xue
  • L Q Chen
  • P Maksymovych
  • S V Kalinin
  • N Balke
چکیده

Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral-tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼10(3) nm(3) sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revealing the flexoelectricity in the mixed-phase regions of epitaxial BiFeO3 thin films

Understanding the elastic response on the nanoscale phase boundaries of multiferroics is an essential issue in order to explain their exotic behaviour. Mixed-phase BiFeO3 films, epitaxially grown on LaAlO3 (001) substrates, have been investigated by means of scanning probe microscopy to characterize the elastic and piezoelectric responses in the mixed-phase region of rhombohedral-like monoclini...

متن کامل

Giant electric-field-induced strain in lead-free piezoelectric materials

First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed,...

متن کامل

Strain-induced isosymmetric phase transition in BiFeO3

We calculate the effect of epitaxial strain on the structure and properties of multiferroic bismuth ferrite, BiFeO3, using first-principles density-functional theory. We investigate epitaxial strain corresponding to an 001 -oriented substrate and find that, while small strain causes only quantitative changes in behavior from the bulk material, compressive strains of greater than 4% induce an is...

متن کامل

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics

(111)-oriented and random oriented Pb0.8Ba0.2ZrO3 (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/TiOx/SiO2/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (i = 75%, E = 560 kV/ cm ) and figure-of-merit (FOM ~ 236) at room temperat...

متن کامل

Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015